On fourier series of Jacobi-Sobolev orthogonal polynomials
نویسندگان
چکیده
منابع مشابه
Estimates for Jacobi-sobolev Type Orthogonal Polynomials
Let the Sobolev-type inner product 〈f, g〉 = ∫
متن کاملFourier Series of Orthogonal Polynomials
It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...
متن کاملOn Fourier Series of a Discrete Jacobi-Sobolev Inner Product
Let μ be the Jacobi measure supported on the interval [−1, 1] and introduce the discrete Sobolev-type inner product
متن کاملAsymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev or...
متن کاملJacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality
Let dμα,β(x) = (1−x)(1+x)dx, α, β > −1, be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev inner product
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2002
ISSN: 1029-242X
DOI: 10.1155/s1025583402000358