On fourier series of Jacobi-Sobolev orthogonal polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for Jacobi-sobolev Type Orthogonal Polynomials

Let the Sobolev-type inner product 〈f, g〉 = ∫

متن کامل

Fourier Series of Orthogonal Polynomials

It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...

متن کامل

On Fourier Series of a Discrete Jacobi-Sobolev Inner Product

Let μ be the Jacobi measure supported on the interval [−1, 1] and introduce the discrete Sobolev-type inner product

متن کامل

Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials

In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev or...

متن کامل

Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality

Let dμα,β(x) = (1−x)(1+x)dx, α, β > −1, be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev inner product

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2002

ISSN: 1029-242X

DOI: 10.1155/s1025583402000358